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Abstract
Confidence intervals for median survival times are derived for censored
survival data. The intervals are obtained by using the quantiles of the
Kaplan-Meier product limit estimator and have the same Pitman efficiency as
the intervals found by inverting the =sign test. Two-sample test= and
confidence intervals for the difference in median survival times are then
developed based on the comparison of the one-sample confidence intervals.
Several methods for choosing the confidence coefficients of the corresponding
one-sample confidence intervals are developed. The Pitman efficiencies of
these two-sample tests are the same as that of the median test proposed by
Brookmeyer and Crowley (1982b). The procedures can also be used for the

Behrens-Fisher problem.

L
o s . . .
ﬁb Nonparametric two-sample inference procedures are useful in comparing the
O
uﬂb responses of treatment and control groups. In medical follow up studies the
Py
s

data are usually subjected to censoring. While many of the two-sample
procedures have been extended to accommodate censored data we show, in this
paper, how to construct two-sample tests and confidence intervals based on
one-sample confidence intervals. This method was first discussed in
Hettmansperger (1984a) for uncensored data where a confidence interval for the
difference in population medians is constructed by subtracting the endpoints
of one {one-csample) interval from the opposite endpoints of the other, The
test then rejects the null hypothesis of equal medians if the one-csample
intervalz are disjoint. Hettmansperger used the =sign-interval as the one-

sample interval which is obtained by inverting the sign-test. 1In the presence

-
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',q.‘. et S

s
L
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of censoring we mcdify the sign-intcrvalr to the so called quantiie-intervail

oL

;Q; whose endpointz are the quantiles of the product-limit estimator of Kaplan and
A

-"-

.‘ Mei=r (1958). After deriving the asymptotic properties of the quantile-

LN

L~ interval we show, for specified overall level a, three ways to select the
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: confidence coefficients for the one-sample quantile intervals. For
N
SNy
i*hy a = 0.05 and equal confidence coefficients for both samples, the one-sample
A
+ e
( confidence coefficients are in the neighborhood of .85 under the proportional
N
“
: N hazard model. The procedures are then applied to data from a colorectal
N
;\}ﬁ cancer clinical trial to compare four treatments.
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5 Section 1. Introduction

&E Nonparametric two-sample tests based on ranks, e.g. median and Wilcoxon
i: tests, have been extended by Gehan (1965); Efrona(1967)l and Brookmeyer and

ﬁ Crowley'(1982b) among others to accommodate censored survival data. While
:JE there is a vast literature on general linear rank test procedures with

.; censored observations, two-sample confidence intervals have received much less
;ﬁ: attention. Nonparametric confidence intervals for the ratio of two scale
.:E parameters were derived for randomly right censored data by Wei and Gail

w

{1983) based on the idea of Hodges and Lehmannif19637. Their method can also

X
* N
-,

be applied to obtain confidence irtervals for the difference of two location

S
=
':} parameters, The confidence sets were computed by a numerical method based on
;\: _)';‘,;;"',
'; a grid search and may not yield an interval. 1In this paper .we shall -focus on
: the problem of testing and confidence intervals for the difference of two
R
%2 population medians with randomly right censored data. Inferences for other
‘ ‘--»
. two-sample location and scale parameters will be discussed briefly in section
- 5.
.
- Following the idea of Hettmansperger (1984a), we shall show how to
=
o construct a two-sample test and confidence interval based on one-sample
. 4
’j conflidence intervals for the median of each population. Let [Lx, Ux] and
l“’ !
Eﬁ :Ly, Uy] denote one-sample confidence intervals for the population medians ex
-
o4
’; and ay with confidence coefficients YX and Yy, respectively. A confidence
1:: interval for A = ey - ex, the difference of the population medians, can be
B ~
::— obtained as [Ly - Ux’ Uy - LX] with coefficient 1 - a. The overall
1S9
‘: coefficient 1 - o obviously depends on the respective one-sample
\jﬁ coefficients Yx and Yy. Bonferoni's inequality can be applied to obtain a
j; pound on the desired overall level pbut it is usually too conservative. Using
"; cn2-<ampla z2lgn-intervals and their asymptotic distributions, Hettmansperger
..I
- (1493421 ancdt? fuw Lo ReLect f, And VY for a specified a. For example; 1t
R
_:1 -1-
o
B
NS

)
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il
t".
@
}'.
L,: one chooses equal coefficients then Yx = Yy is about .84 for a = .05.
~

P
‘~§: Further, the size a two-sample test of HO: A =0 vs. HA: A = 0 rejects Ho
9%
( when the one-sample intervals are disjoint.

NN

::ﬂ In the presence of censoring, the sign-intervals need to be modified. To
o motivate the construction of a sign-interval with censored data let us first
‘A

2

A consider the situation when there is no censoring. Let X(1) S ... % X(m) be
e

HJ‘ s . . : . ']

NN an ordered sample from a continuous distribution with unique median ex. The
S

sign-interval is LLX, Ux] = [ ] with confidence coefficient

<

:' }‘9.'

X(d)' x(m-d+1)

( ! Yx = 1-2 p(S < d), where S has a binomial distribution with parameters

S

L m and .5 and d is called the depth of the =ign-interval. Given any
j{:' distribution function F(t), define its left continuous inverse to be

3

1;?;
N F™'(p) = inf{t: F(t) 2 p} for OSpsI (1.1)
S

\":::
s . -1 o1
. One then notices that X(d) = F (d/m) and X(m—d+7) =F, ((m-d+1)/m), where
fici Fm(°) is the empirical distribution function. In the presence of censoring,
Y
;k{{ the nonparametric counterpart of Fm(-) is the product-limit estimator
N
4:) (PLE) F_{+) proposed by Kaplan and Meler (1958). It is now clear that, for a
N specified depth d, one can use
xjx
100
<
S : e (a/m), ED ((m=d+1)/m)] (1
= | -d+

!~ LLx, Ux] LFm d/m), q (m m .2)
Py

:}: as a confidence interval for the median. Tne confidence coefficient YX will
bL no longer be available from a binomial table and will have to be approximated
s;"._

jﬁ= from a normal table due to the censoring scheme. It should be mentioned here
l?j that the confidence interval (1.2) is different from the confidence region Ra
‘. bazed on the =ign test in Brookmeyer and Crowley (1982a). For this reason and
ﬂé} =ince {!.21 is ootained from estimates of the quantiles of the true
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.( .
$\ distribution function, hereafter we shall refer to (1.2) as the quantile-
‘: interval with depth d. The confidence region Ra need not be an interval so

( ! they suggested the use of only the interval part of the region and denoted it
‘¢; by Ia. This truncation of the confidence region to an interval complicates
?“g the issue of establishing two-sample inference procedures based on one-sample
nf ) procedures. We therefore consider the quantile-intervals, and we examine the
% effect of censoring by comparing our results to the uncensored case studied by
‘Sy . Hettmansperger (1984a). One-sample confidence intcrvals for the median which

are based on the bootsatrap method were derived by Reid (1981).

iis Let [Ly, Uy] be the quantile-interval constructed as in (1.2) for an
l;; independent y sample with confidence coefficient Yy. The selection
ig of YX and Yy for a specified a is given in section 3 after deriving the
,;E asymptotic distributions of the relevant statistics. Three different ways to
E: gpecify Yx and Yy are given. Under the proportional hazards model some values
| ; of Yx and Yy are tabulated in section 4. In particular, for a = 0.05 and equal

E;ﬁ coefficients (Yx = Yy), the coefficients Yx and Yy are in the range of .83 to

Eig .88 even for heavy censoring and for many pairs of sample sizes. Our

‘:j asymptotic results are facilitated by i.i.d. representations of the product-

.

i;& limit estimator and ite quantile process due to Lo and Singh (1986). Their
‘;g results are summarized in section 2. In section 5 @e apply the procedures to
. data from a pnhase III colorectal cancer clinical trial.

Ezi It was 2nown in Hettmansperger (1984a) that the tests based on sign-

‘ii intervals have the same efficiency as Moods' (1950) median test. In the
;‘ presence of censoring, Moods' median test has been extended in several ways by
5? Prentice {1978) and Brookmeyer and Crowley (1982). Gastwirth and Wang (1987)
EE' extend the control percentile test which is also a mecian type test when the
é apeclified percentile i= the median. All these tests turn out to have the =ame
E;; Pitman efficiency as our test,
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P Section 2. Preliminaries
‘h\“-
PR
iﬂ Let us first introduce the two-sample location problem with randomly
LR
Wy _ o Lo 0 o Lo 0
!; right censored data. Let X1, X2, - Xm and Y1, Y2, - Yn be two
ol ‘,,'\
:ujt independent random samples from continuous life dicstribution functions
D
N FO(t) = L(t - 8 ) and G7(¢) = L(t - 0,), respectively, where L(+) isa
oty
N continuous distribution function with unique median zero. Hence,
‘ ! .
- o - VIR B _
-ﬁﬁ G7(t) = F(t = 8), where A =8 -0 . Let Cy, Cp ..., Cpand Dy, Dy, ..oy Dy
)
.
‘ ﬁé denote two independent random samples from arbitrary censoring distribution
W
[M A
(' ‘ functions H(+) and K(+), respectively. 1In the random right censoring model,
M-~ one observes {(X., €.), i =1, ..., m} and {(Y., 8§.), j =1, ..., n}, where
N 1 1 J J
T
vy X; = min (X3, C) = XJ A cC., e = I(X, =X, ¥ =min(¥;, D) =¥, AD,,
~{3i i i i i i i i J J J J J
;t' éj = I(Yj = Y?) and I(+) is the indicator function. The censoring times will

be assumed to be independent of the corresponding lifetimes, and hence the
survival functions of X; and Yj are F(t) = ﬁo(t) H(t) and G(t) = G°(t) K(t)

respectively, where for any distribution function W(+:), its survival function

e

N -
oy is W(t) =1 = W(t).
o
}:i Denote the Kaplan-Meier (1958) product-limit estimators (PLE) of F° and
2
{:» 3° vy FE and Gg . With proper choice of d, and dy to be discussed later, the

x
5

i quantile-intervals for 8 and 6 with confidence levels Y_ and Y respectively
\f:"-, X y X y
’ ',::: are,
ARG
"t
®
K- . o -1 o -1
" , i = /m), F - d_+ .
oo (L U, (F, (dym), Foo(m ot 1/ (2.1)
QR
=
e
."' and
.-',":-:
j:ﬁ: - . A0 - A0 =1 _
el L, UyJ = (6 (dy/n), 5, ((n dy +1)/n)] , (2.2)
v, .,
L
fﬂ: Wnere the inverze function Fi "' is defined in (1.1). For specified a, called
-.J'
;A
2
R -4~
®
-
A
SN {‘;-'-‘-.'.n.’-‘a‘-‘.xf—'a;.‘A.. y



o,

' 4
e
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‘:y?. the overall error rate, we shall show in the next section how to pick the two
‘e
’l -
; ﬁ quantile-intervals so0 that:
a5

e |

’
i)

{a) Tne level a test for HO: A =20 versusg HA: A =20
4“
S . : . C e s
ol rejects HO whenever the quantile-intervals are disjoint.
105
3 i
WS , . . .
:xb (b) The (1-a) confidence interval for A is
AYAN
AN
P
, L, - U, Uy - L] (2.3)
B e
e
W
P ™.
ﬁ::; The choices of Yx and Yy (or equivalently of dy and dy) which are given
v
::! in the next section, are based on the normal approximations of the endpoints
XS
WO of the quantile-intervals. We shall now introduce the background of such
S}
<
}': approximations which are based on 1.i.d. representations of the PLE F; and its
\f:'

quantile function F: —1(-) due to Lo and Singh (1986).

- h] l“

Let F1(t) = P(X1 s t, e, = 1) and G1(t) = P(Y, £ ¢t, 61 = 1) be the

el
0N
RSN

‘-‘}&ﬁ

subdistribution functions for the uncensored observations. For positive reals

v 2
r'ss

X, t and for ¢ taking values zero or one, let

N
%‘;\.:
Ao d F, (s)
X = (xst,e=1 1
° Elx,e,1) = FO(r) | BXEL.ezl)l XAt 5 (2.4)
F(x) [(F(s)]
é Similarly, one can define n(y, 8§, t) using instead G°, G and Gy in (2.4). The
;n. following proposition is an extension of Theorem 1 of Lo and Singh (1986). A
‘%2; proof can be found in Lo, Mack and Wang (1986).
w0
.l
h.'.hA
‘ii.
-5-
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Proposition 1. For any T such that F(T) < 1, we have

m
f &(Xi, € t) + Rm(t)

(o] (o]
Fm(t) - F(t)

=l

= Em(t) + Rm(t) )

where sup lRm(t)] = 0(2n m/m) a.s. and &n denotes the natural logarithm.
0stsT

Remarks. 1. The £(X,, e, t)'s are i.i.d. with mean 0 and variance

-

[Fe)1% [° Eiliiiz :
(F(=)]

2. The process m”2 Em(t) converges weakly to a mean zero Gaussian
procesz Z{t) which has continuous paths with probability one on D[0,T].

The next proposition is a slight variant of the quantile répresentation
in Theorem 2 of Lo and Singh (1986) which is an extension, in the presence of
censoring, of Bahadur's representation for the sample quantiles (Serfling
1380, 2. 91). The current variant is similar to Ghosh's extension of
Banadur's representation (Serfling 1980, p. 92) as we are concerned

/2 . : .
wita n' - asymptotics, and the proof can be obtained along the =ame lines.

Proposition 2. For any O < p < 1, if the derivative £9(t) of FO(t) is

continuous and positive at t = F° _1(p), we have
(X F> o
o =1, . .o -1 M By ey P -1/2
F oo (p) - F (p) = - 5 = T + oP(m )
' i=1 £f7(F (p))
- -1 -1 -1/2
= - 2 (F2 T /e Tip) )+ oS

-6~
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Similar results can be obtained for the y-sample and we will denote the

mean process by an(t).

Section 3. Asymptotic Behavior of Two-sample Tests and Confidence Intervals.

Consider the two-sample location model in Section 2. 1In this section we
shall aszume that the distribution L is continuously differentiable near zero
with density 2(0) > 0. The asymptotic results in section 2 of Hettmansperger

(1984a) will be extended to the censored data case.

Theorem 1. Let Z be a positive constant and

1/2
= q «J = . (.
d, = m/2+ 0.5 -2 m’ "/2 3.1)
Then
Y _ . 172 o, - -1/2
L F o \dx/m) 9, ux/[zm 2(0)] &m(ex)/2<o> + oP(m Y,
(3.2)
o -1 1/2 - -1/2
y = ¥ \/‘- m) = - i .
dx o ({m dX +1)/m) B, * Zx/[2m 2(0)] &m(ex)/l(O) + op(m )

Proof. By propeosition 2,

o o] -1/2

-1 = -1 o -1
- = F ‘d /my - ( / -
y d,/m) £ (F (dx m))/L(F (dx/m) ex) + oP(m Yy
—a s Ct/tem) - zo/sem "2y - TE (P TNd/m)) - £ (6.)1/2(0)
X - ’ X “’m X m X
= - -1 = o -1 -1/2
-z ! 209 ( - ( m) -
5 QX,/ (D) + 1/8(0, 1/2\FO (dx/m) ex)] Em(F (dx/m)) + OP(m
- T .. 1/2 =
Nince f ) nas mean D for all ¢ and tne process {m Em(t), 0$tsT} converges
A2a« Y 7oA continuous path Gausszian process, 1t follows that
_7_

)
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- -1 - -1/
£ (FO T(d /m)) = § (8) = op(m %)

P(m—”Z) and (<) is continuous at zero implies that

=172

- o =1
Also g (F (d,./m)) = o
the second to last term is also op(m ). We have thus proved Ly in (3.2)
and L, is similar. ||

Remark. The remainder oP(m_1/2) in (3.2) and (3.3) can be replaced by

-i/2
o(m

) a.s. with a modified proof or an even better rate (say 0((&n m/m)3/u)
a.s.) if we further assume that the second derivative of L exists. While all
the asymptotic resul.s on convergence in probability in this section can be

generalized to convergance a.s., we shall not attempt to do =20 as the current

forms suffice for our purpose.

Statements similar to Theorem 1 apply to L

y and Uy as well with

corresponding Zy and dy. Let

)
X = -2
o= f)0 R0 dF (e (3.3)

then Var(ém(ex)) = rx/(um) . The central limit theorem applied to gn(ex) then
Zives=
Coro’lary. Az m > o
1/2 . . : .
i) m (Lx - ex) converges weakly to a Normal distribution with

mean - ZX/EZ £(0)] and variance Tx/[2 Q(O)]z.

L) m (J_ - LX) converges in probability to ZX/Q(O)

. LN PRI A AP | R TP YA
N TN Y . e e e Y, . e e T e e e
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{(iii) P(ex < Lx) converges to ¢(-Zx/(rx)1/2), where ¢ is the standard

normal distribution function.

The approximate confidence coefficient for [Lx, Ux] is thus
172
Yo = 1 -aet-z /() 7T, (3.4)

[t should be notea that Tx = 1 in the uncensored case.

The statements in the Corollary also applies to L and Uy with

J YLE(=)77% o, (0.
Let N = n + m, and assume that m/N tends to A, 0<A<1, as m and n tend to

infinity. The following theorem relates a, the overall error rate, to ZX and

~

2. wnich determine Y and Y .
7 X ¥

(1-x) 172 z o+ A2

172

Theorem 2. P(U_ - L, < &) + P(L - U >8) > 20 - A

Ta1-a) Tt A Ty]

1
Proof. By <ne Zorollary, N1/2(Uy -8 )-N /2(Lx - ex) converges weakly to a

y
normal distribution Wwith mean Zy/[22(0)(1-k)1/2] + ZX/EZZ(O) A1/2] and

variance ry/[22(0)(1-A)‘/2]2 + rx/[ZR(O)A1/2]2. Hence

P{U - L_<A)
Y X

1/2 1/2
172 A 2+ (1-1)

U I R 0,) < 0) » af- y -
sy [h v, + (=)t ]

Simitarly, P'L - U_ > A) converges to the same limit. |—_|

i X
sefine Zr1 by a = 2@(-Zu). and let Zo» Zy satisfy

_9_
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2 172 1/2 172

OIS _ - -

NN (1-3) Z, * A Zy z LO=2) 1 o+ ry] (3.5)
A

'\v_,

Ty _
4. Then for depths d,, d, given by (3.1), we have
o

S

-
P(L - U_<A<CU -L))*1-a,
K.~ y X y X
KOS

v .

N‘" M4 = ) + . - -

pia and under HO A =0, P(LX Uy) P(Ly > Ux) + a. Hence [Ly Ux’ Uy L.x]
:f;', is a confidence interval for A with approximate confidence coefficient (1-a),
A
and the test which rejects Hy whenever 0 is not in the confidence interval, or
":_, equivalently whenever the two quantile-intervals are disjoint, has approximate
" .
o size a.

.\ The condition (3.5) provides an infinite number of choices for Z, and Zy.
’_ The following Theorem shows thav the asymptotic length of any of the two-

-:::.-', sample confidence intervals does not depend on Zx and Zy.

NN

_;\ Theorem 3. Let A denote the length of the two-sample confidence interval.

N .

A Then N”2 A Zacm-)‘hx + My]”z/{[)\(1-)\)]”22(0)} in probability.

) /
b Proof. NU2 A= N1 2(U - L)+ N'/Z(U - L)
> - _— ¥y Y X X
S
A 1
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e y X
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o by Corollary (ii). The theorem now follows from (3.5). | |
®

.\"::- Ae now consider three ways to specify Zx and Zy.
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e~ 1. Quantile-intervals with equal confidence coefficients:
W
Y
o 1/2 1/2 L
s If we choose Y = Yy, then Z /1 " = Zy/ry . The condition (3.5) then
.] \n
W
f implies
A -
» LN
Q%:.
‘1‘..
e " " 1
N 1/2 [(1- A)T + At ] /2 72 (e, + mr )1/2
1 Z = y Z = X X y . Z
\ !
I ' -0t ]]/2 f 1% )2k (mr )2 ¢
" . X y X y
‘W
‘\.__'\
LSl
LS}
- 1/2 172 (3.6)
- 1 (nt, + mt )
A 1/2 y X y
Z = {1t /1) Z_ = T/
! y y x X 1/2 1/2 a
- (nt_) + (mt )
AN X y
'-‘_\
A
P
\.Q
'.; 2. Quantile-intervals with equal asymptotic lengths:
7};} In this case, n /2 z, = n" 172 Zy . Combining this with condition
‘2;1 (3.5), we have
{ . 1/2 1/2
71
200 =0+ Ary] 172 (nt + m1y)
Ta 2y = 172 7z "M % s 172 "l
P (m(1=x)]1""% + (aA) 2n
-
D %'
.
O (nt_ + mt )1/2
e _ /2, X y
s Zy = (n/m) 2, = 3 m1/2 Za (3.7)
/,'_-
®
Ny
:: 3. Quantile intervals with equal depths:
2054 ‘ 172 1/2
3. In this case d, = d,, and (3.1) impliesm - n = m Z, - n Z,.
Y y X y
q\
‘;” Condition (3.5) now gives
§ t-nt 12072 2 e 3 2
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(nt_ + mt )1/2 n'’% 7 mT/Z(m-n)
_ X y a
- n+m
1/2 172 1/2
Z = (m/n)”2 Z, - (m—n)n—”2 = (HTX - mTy) i i o
y X ) n+m
(3.8)

Remarks. 1. When the sample sizes are equal, (3.8) reduce to (3.7) and in

both

cases Zx =2Z =12 (1t + ry)1/2/2. However, unlike the uncensored case

(where L 1), (3.6) does not reduce to (3.7).

‘(uf-lu’-".

Under T, = Ty, the Z, in (3.6) and (3.7) equals r;/z times the Z, for the
corresponding uncensored case, but in (3.4) the 1;/2 cancels and the
confidence coefficients Yx and Yy remain the same as the uncensored
case., Neither Z,, Zy nor Yx’ Yy produced by (3.8) remains the same as

the uncensored case. If in addition m = n, all three solutions reduce

to Zx = Zy = Za 11/2/2. Note that if the censoring schemes are different
for tne two samples, in general T, ® ry even under HO: A = 0.

It should be noted here, as implied by Theorem 1 and (3.5), that the
implementation of the confidence interval and test for A rely only

on T, and Ty and not on the density at the median. Hence our procedures
avoid estimating the density at the median which is required by
Brookmeyer and Crowley (1982ab) and Wei and Gail (1983). All procedures
easentially require the consistent estimation of Ty and t.. In practice

this can be done in several ways, for example,
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T , (3.9)
X X <m N(Xi)[N(Xi) + di]
i 7x
where mx = F: _1(1/2) is the x-sample median, di is the number of
m
observed deaths at X; and N(Xi) = I I(Xj > Xi) is the number of
J=1 -

observed survival times larger than Xi’ The estimator Tx is similar to
formula (2) of Brookmeyer & Crowley (1982a). See also (5.2) of

Brookmeyer and Crowley (1982b) for an alternative estimate.

4, Mood's median test was shown to be a special case produced by sign-
intervals in Hettmansperger (1984a). With censoring, the median test
statistics can no longer be expressed in terms of the differences of
order statistics as in formula (6) there. It is not clear whether the
median test by either Prentice (1978) or Brookmeyer and Crowley (1982b)

can be produced by our quantile-intervals.

Section 4. Tables for confidence coefficients and a recommendation
Confidence coefficients Yx and Yy corresponding to a two-sample test of
HO: A = 0 versus HA: A = 0 at level a = .05 will be provided in this section
for the three intervals described in the previous section. Due to censoring,
the confidence coefficients Yx and Yy depend on the value of Ty and 1. 80 we
shall only consider a special case, the proportional hazards model, where Ty
. oy =0 r = =0 s
and ry can be evaluated easily. Let H(t) = [F (t)] , K(t) = [G(t)]", then

T = (21"+1 - 1)/(r + 1) and L probability of x-censoring = r/(r + 1).

X
o s+
Similarly, Ty = (2

- 1)/(s8 + 1) and ny = probability of y-censoring =
2/(s + 1). We shall consider r, = = 1/3, 1, 3, which correspond to 25%, 50%

and 75% censoring.

_13_
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i‘ - Note that v = T, when r = s, then (3.6) and (3.7) give the same A and Yy as
;z- in the uncensored case. Henece, the first two columns which corresponds to r =
N
,“: s in Tables 1 and 2 should be the same as those columns corresponding to
»

-..‘ 1
\ : equal-coefficient and equal - length case in Table 1 of Hettmansperger
* .

;ﬁi (1984a). The discrepancy is due to computational accuracy. In the equal
" v
Aph
;3: depth case (Table 3), (3.8) depends not only on the ratio of sample sizes but

- ) also the values of m. We chose m = 90 so that the corresponding n is an

j:i: integer. Our computation shows that the pair of coefficients are very high

G:j: (over .95 for m/n 2 1.5 and close to 1 for m/n 2 2) for unequal sample
e
;‘- sizes. Therefore we only provide the results for ratio of sample sizes (m/n)

s that are 1 and 1.5 in Table 3.

-

-

}-

:i' As can be seen from the tables, the confidence coefficients in Table 1
1S

{ L)

o appear to be quite stable (between .83 and .88) for various ratio of sample

e

':§ sizes and degrees of censoring compared to those in Tables 2 and 3. For this
o
,:j reason the equal coefficients solution (3.6) seems preferable to the others
o,

Bl

and we recommend its use in applications. In an unpublished paper of Tableman

20

and Hettmansperger (1988) the equal lengths case may be preferable in some

e,

LSE uncensored cases based on Bahadur efficiency. In the censored case, the equal
ﬂ:{ lengths solution (3.7) may be preferable to the equal coefficients solution
;é%; (3.6) since one only needs to estimate t  + Ty when m = n or

};i; (1-A)rx + Ary in general, while in (3.6) one has to estimate, in addition,

N

® T and Ty separately. The choices of Zx and Z

»

y (or equivalently Yx and Yy)

;3 for (3.8) are not recommended since they are more complicated than (3.7) even
¥
v
g% when TS ry and they require much higher coefficients (see Table 3) for

W

] \ . . ) .

:- unbalanced =ample sizes compared to those coefficients provided in Tables 1
. and 2.
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Section 5. An Example

We shall apply the two-sample procedure in section 3 to data from a Phase
III colorectal cancer clinical trial (Ansfield and Klotz 1977). The data
analyzed were an updated version reported in the Central Oncology Group Final
Report (COG 7030), Spring 1977. These data were also analyzed by Brookmeyer
and Crowley (1982a) to compare confidence intervals for the median survival
times of four dosage regimens 5-fluorouracil. Refer to Brookmeyer and Crowley
(1982a) for a description of the data. A summarization of the data is given
in Table & together with 95% confidence intervals. The median survival time
(weeks) and the quantile-intervals are computed by a continuous version of the
Kaplan-Meier estimator, denoted by F:, discussed in Remark 1 of section 6 and

is therefore =slightly different from the median in Table 7 of their paper.
(Table 4 here)

For Y. T .95 the Z, in (3.4) is equal to 1.96 times (Tx)”2 where T, is

-~

estimated by T, in (3.9). The depth d, in Table 4 is then obtained from

£3.1) which for treatment 1 is 19.09. The quantile-interval [LX, Ux) is

¥ - * - *
obtained by L. = F ! (d./m) and U_ = F ! (m-d +1)/m), where F_ is the
X m X X m X m

linear interpolated Kaplan-Meier estimate as discussed in Remark 1 of section
5. A table for the survival estimate SO =1 - F; is available for treatment 1
in Tavble 8 of Brookmeyer and Crowley (1982a). OQur estimate FZ {which is not

included here) coincides with theirs.
To make pairwise comparisons at the 5 per cent significance level we need -
the ~onfidence coefficients Yx and Yy and the depth values dX and dy. Table 5

gives the resulta for the three different methods to specify ZX and Z, (cf.

Curoand ‘j.6/ o (5.8}).
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(Table 5 here)

It turned out that none of the one-sample quantile intervals in Table 5
are disjoint hence all three methods fail to detect a significant difference
Wwithin any of the six pairs. Brookmeyer and Crowley (1982b, section 6)
applied the k-sample (k=4) median test to this data set and also founa no
significant differences among the four treatments. Our conclusion is
therefore in agreement with theirs. It is worth noting here that the
quantile-intervals with equal asymptotic lengths actually yield intervals with
quite aifferent lengths., This suggests that higher order accuracy is needed
for the asymptotic length than that given in Corollary (ii) of section 3. In
our current example the sample sizes (and rx) for each treatment are fairly
even, hence the quantile-intervals produced by all three methods ((3.6) to

(3.8)) are comparable.

Section 6. Discussion and generalization
1. The quantile-intervals that are defined in (2.1) and (2.2) are based
on the PLEs F; and Gg which are step functions. Since the distribution
functions FO and GO are assumed to be continuous it may be preferable to use a
continuous version (for example, linear interpolation) of the PLE. Let F; and
G; denote such a version by connecting the jump points (c.f. Figure 1 of
Brookmeyer and Crowley (1982b)). It follows from the appendix of Gastwirth

and Wang (1988) that

om ") a.s. (6.1)

-16_

sup  |Fr(t) - FO(t)]
up -
ostsT ™ m

and




w
¢
o -1 % =1 -
= Sup ]Fo (p) - F (p)| = o (m 1/2 ) a.s. , (6.2)
) m m p
S o(pSp
- ol
s
!
{ for any o<po<1. In practice, one may use the smoothed quantile-interval
- * * *
';- [Lx, UX] by replacing F; by Fm in (2.1). It is immediate from (6.2) that all
»ii the asymptotic results in section 3 apply to the smoothed quantile-intervals
:' - * *
t LLx, Ux].
':i 2. Theorem 3 shows that all the intervals have the same asymptotic
\".
::3 length and N”2 A /(2 Za) converges in probability to
o . 1/2 2, L1722 . .
L(1-A)TX + Ary] ZL4X(1=-2)27(0) ] which is the reciprocal of the Pitman
N efficacy (c.f. Hettmansperger (1984b)) of the control median test by Gastwirth
jf} and Wang (1988). It can be checked easily that both median tests by
O
.\'
‘; Brookmeyer and Crowley (1982b) and Prentice (1987) have the same efficacy as
o
:'f the control median test. Hence all four median type tests have the same
N
N efficiency.
o
\l

3. The two-sample inference method based on quantile-intervals was

¥

. developed only under the location model. For the Behrens-Fisher problem where
B,
(- we test whether both populations have the same median but may differ in shape,
] .r"
e,
) the significance level
o 2208 )z, A%+ g% )z (1-0) 178
J L y X
- a > ol o 2 o 5773
- [Aty[f (ex)] + (1-A)rx[8 (ey)] }
°
L
Y
L
ff' Then one must estimate, in addition to T, and ry, the ratio fo(ex)/go(ey),
‘;' where £° and go are the densities of FO and Go, respectivély. The estimation
-
ﬁ: of fo(ex)/go(ey) can be accomplished by density estimation procedures in the
{2 censored case (Lo, Mack and Wang (1986), Padgett and McNichols (1984)) which
; usually require very large sample sizes. Hence, the procedure in this paper
-", -
:: can be used for the Behrens-Fisher problem as in Hettmansperger (1973).
-
"'
’: -17-
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4, We demonstrated in this paper how to conduct two-sample inference
methods based on one-sample procedures. Although this is done for the
quantile-intervals (or sign-tests) under the location model it can be applied
to other nonparametric procedures (e.g. linear rank tests) and models (e.g.
scale model or stochastically ordered alternative). The crucial step lies in
the asymptotic distribution of the endpoints of the one-sample confidence

intervals (ef. Corollary in section 2).

Acknowledgement: The authors wish to thank Paul Johnson for his most helpful

computational assistance.
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" Table 1. Equal Confidence Coefficients to Produce a Size .05

Ll

A
Exj Two-sided Two-Sample Test (Yx =Y)
wki y

i m/n (ﬁx,ﬂy)

Te T Ty (.25,.5) (.25,.75) (.5,.25) (.5,.75) (.75,.25) (.75,.5)

'( : 1 .834 .835 .851 . 835 .84 .851 .84
e 1.5 .836 .8l .862 .834 .854 .8u2 .837
2 .840 L8146 .870 .836 .862 .837 .835
e 2.5 .84y .851 .876 .839 .868 .835 .843

o 3 849 .855 881 843 873 834 .835

N Table 2. Confidence Coefficients Corresponding to Equal Lengths

. (nx,wy)

m/n T =T (.25,.5) (.25,.75) (.5,.25) (.5,.75) (.75,.25) (.75,.5)

1 .834 .834 .864 .806 .958 .737 .806 .864 .933 .754 .737 .958 .754 .933
‘Q; 1.5 .879 .794 .909 .771 .983 .717 .8u48 .821 .967 .930 .763 .920 .785 .890

2 .910 .770 .938 .750 ;993 .707 .880 .793 .98u4 .717 .786 .889 .811 .858
2.5 .933 .754 .958 737 .997 .701 .905 .774 .992 .709 .806 .864 .834 .834

3 .950 .742 971 727 .999 .696 .924 .76 .996 .703 .826 .8uk .854 .815

VSR NS AR b A B N S P L S VU B A A
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'S‘: Table 3. Confidence Coefficients with Equal Depth (dx = dy)

ta R

8

i . (nx,ny) m=n=90 m=90, n=4&0

:' Y, Y, Y, Y,

D

2_-: (.25,.25) .834 834 .997 .997

) (.25,.5 ) .864 .806 .998 .993

:g:: (.25,.75) .958 737 1999 .963

::5_;;' (.5 ,.25) .806 .864 .993 .998

IOT (.5 ,.5) .834 .834 .995 .995

& (.5 ,.75)  .933 754 1999 1966

o (.75,.25) .37 .958 946 .99

NS (.75,.5) .75k 1933 .951 .998

" (.75,.75) .834 .834 .973 .979

[

¥ :zj

. ’Ej Table 4. Summary Statistics and 95% Confidence Intervals for Four Treatments

N

(

A Treatment 1 2 3 y

e

-

‘N Sample size 53 56 58 52
) Censored proportion 16/53 8/56 14/58 7/52
E;: Median survival time (weeks) 59.18 39.53 43.23 28.52

'-‘,E: Estimated T 1.109 1.152 1.23 .90

:“ Depth d, 19.09 20.05 20.33 20.15
o 95% quantile-interval [LX, Ux) [37.4,72.5) [28.6,52.3) [25.9,61.4) [24.3,45.0)
o 95% confidence interval £38,73) £31,51) [28,60) [25,46)

by Brookmeyer and Crowley

p) )
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o

°
_':::: Table 5. Two-Sample Procedures for all Six Pairwise Comparisons, a = 0.05
..-_‘.
:':\‘

b_"\'
K

u
f Equal coefficients Equal lengths Equal depths
:-:: Treatment 1 & 2

oo Y Y, .834  .834 .832  .836 .780  .878
-\.’

o a, 4, 21.69  22.93 21,71 22.91 22.29 22.29
o

! (L, U [39.6, 64.7) [39.6, 64.6) [40.3, 63.3)
o [Ly» U)) [34.8, 48.2) [34.8, 48.3) [34.2, 49.4)
':f-\ Treatment 1 & 3

.
£ Yo 834,834 .835  .833 .T46  .897
N x oy
d, 4, 21.69  23.65 21.67  23.67 22.62  22.62

.-,:.‘ [LX, Ux) [39.6, 64.7) [39.6, 64.8) (41.1, 62.6)
e (L. U) [35.5, 51.6) [35.5, 51.6) [32.0, 58.2)
:r\"' Treatment 1 & 4

AN

° (. .335 .835 .814 .855 .832 .838
. - ‘ J
;-_’.-; d, dy 21.68  21.76 21.92  21.52 21.72  21.72
o Lo, U [39.6, 64.7) (39.8, 64.0) [39.6, 64.6)
‘\_p- X X
o LU [24.7, 42.0) (24.6, 42.4) [24.7, 42.1)
ml Treatment 2 & 3

S (PR .834  .834 .831 .837 .859  .806
o 09, 23.65  22.93 23.69  22.89 23.29  23.29
-'f- ,‘ -

L L U [34.8, 48.2) [34.8, 48.3) [35.1, 47.6)
Yy e (35.5, 51.6) (35.5, 51.5) [35.1, 52.2)
:.’ Treatment 2 & 4
w T, B35 .835 816 .853 876 .778
o 1o, 21.76  22.93 21.54  23.16 22.32  22.32
‘® L ) [34.8, 48.3) [35.0, 47.8) [34.2, 49.3)
\; Ly d,) [24.7, 42.0) [24.6, u2.4) [24.8, 40.3)
}2 Treatment 3 & 4

o (RS 835  .835 813 .856 895 .74C
W

o 1, 4, 23.64  21.76 23.93  21.50 22.65  22.65
o Lo, U 135.5, 51.6) [35.7, 51.1) [32.2, 58.2)
... L, U T24.7, 42.0) (24.5, 42.5) (24.9, 38.9)
..

o
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'fﬁi Block 20 (Abstract Continued):

Ry

r:n: of these two-sample tests are the same as that of the median test proposed

g by Brookmeyer and Crowley (1982b). The procedures can also be used for the
VoS Behrens-Fisher problem.

EaN

[ Nonparametric two-sample inference procedures are useful in comparing

TR the responses of treatment and control groups. In medical follow up

;:ﬁj studies the data are usually subjected to censoring. While many of the

two-sample procedures have been extended to accommodate censored data we
show, in this paper, how to construct two-sample tests and confidence
intervals based on one-sample confidence intervals. This method was first
discussed in Hettmansperger (1984a) for uncensored data where a confidence
interval for the difference in population medians is constructed by sub-
tracting the endpoints of one (one-sample) interval from the opposite
endpoints of the other. The test then rejects the null hypothesis of
equal medians if the one-sample intervals are disjoint. Hettmansperger
used the sign-interval as the one-sample interval which is obtained by
inverting the sign-test. In the presence of censoring we modify the sign-
interval to the so called quantile-interval whose endpoints are the
quantiles of the product-limit estimator of Kaplan and Meier (1958).

After deriving the asymptotic properties of the quantile-interval we

show, for specified overall level o, three ways to select the confidence
coefficients for the one-sample quantile intervals. For o = 0.05 and
equal confidence coefficients for both samples, the one-sample confidence
-, coefficients are in the neighborhood of .85 under the proportional hazard
Ry model. The procedures are then applied to data from a colorectal cancer

i clinical trial to compare four treatments,
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